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Motivation:
• AMR is needed to cover the short length scales of gravitational–

wave sources (∼ M) and the long length scales of gravitational
waves (∼ 100M).

• AMRMG will feed data into Hahndol, NASA Goddard’s AMR
evolution code.

• Goddard Numerical Relativity Group: John Baker, Joan Cen-
trella, Dale Choi, Breno Imbiriba

What does AMR mean for an elliptic solver?
• Grid resolution is determined locally as a part of the solution pro-

cess.

• Specify the maximum desired truncation error, code constructs the
grid to meet this requirement.



AMRMG uses PARAMESH

• Paramesh uses block refinement of the grid.

• Each block contains a fixed number of cells.

• Blocks are refined by bisection (1 block becomes 8 blocks in 3-D,
2 blocks in 1-D)

• AMRMG uses cell centered data.

1-D Example:
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Multigrid Approach

• Solve the elliptic problem using a hierarchy of coarse and fine grids.

• The coarse grids are responsible for the long λ part of the solution.

• The fine grids are responsible for the short λ part of the solution.

• Approximate solutions at each refinement level are obtained by
relaxation (smoothing).

1-D Example:

∂2φ

∂x2
= ρ =⇒ φj+1 − 2φj + φj−1

∆x2
= ρj

=⇒ φnew
j =

1
2
(φold

j+1 + φold
j−1) −

∆x2

2
ρj

• Two choices for multigrid with AMR: relax across the entire com-
putational domain or relax independently at each refinement level.
AMRMG uses the second choice.



Nonlinear 2-Grid V-Cycle
Equation: E( · ) = ρ

{ }2 = fine grid, { }1 = coarse grid
R = restriction 2 → 1, P = prolongation 1 → 2

(1) Solve E2( · ) = ρ2: Guess a solution φ̃2 = 0 and relax to obtain an
approximate solution φ2.

(2) Compute the coarse grid source:

ρ1 = R(ρ2 − E2(φ2))︸ ︷︷ ︸
†

+ E1(Rφ2)︸ ︷︷ ︸
‡

† subtract off the short λ part of the source that the fine grid
got right

‡ add back the long λ part of the source that was removed by
the short λ subtraction

(3) Solve E1( · ) = ρ1: Guess a solution φ̃1 = Rφ2 and relax to obtain
an approximate solution φ1 (or solve exactly for φ1).

(4) Solve E2( · ) = ρ2: Guess a solution

φ̃2 = φ2 + P(−Rφ2︸︷︷︸
†

+ φ1︸︷︷︸
‡

)

† subtract off the long λ part of φ2

‡ add φ1, which contains primarily long λ information due to
the construction of ρ1

(5) Relax to obtain an improved approximate solution φ2.



AMRMG is second order convergent

• Guard cells at coarse/fine interfaces must be filled to third order
accuracy.

1-D Example:
−5/2 −3/2 g−1/2

G 1/2 3/2

∂2φ

∂x2

∣∣∣∣
−1/2

=⇒ φ−3/2 − 2φ−1/2 + φg

∆x2
+ O(∆x2)

Guard cell φg must have errors no worse than O(∆x3) or the overall
second order convergence of the code will be spoiled.

• Restriction and prolongation must be handled carefully:
R, P: linear interpolation (O(∆x2) errors)
R, P: cubic interpolation (O(∆x4) errors)

• Guard cell filling: Use R and P
• Step 2: ρ1 = R(ρ2 − E2(φ2)) + E1(Rφ2)
• Step 3: φ̃1 = Rφ2

• Step 4: φ̃2 = φ2 + P(−Rφ2 + φ1)



FMR Convergence Test:
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Error Comparison:

(Grid 4 ∼ 33 K pts, Grid 5 ∼ 262 K pts, Grid 3p2 ∼ 11 K pts)
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Error Control:

V−cycle on grid G

Is <res>_grid small compared to <rte>_grid?

YES

NO

NO

Is <rte>_block less than the tolerance for each block?

Refine blocks creating
new grid G

YES

Exit

<rte>_grid = norm of relative truncation error across the grid

<rte>_block = norm of relative truncation error across a block

<res>_grid = norm of residual (E − rho) across the grid



Brill Waves

• Metric:
ds2 = Ψ4

[
e2q(dρ2 + dz2) + ρ2dφ2

]

• q = aρ2e−r2
(Holz, Miller, Wakano, Wheeler)

• Extrinsic curvature: Kij = 0

• Hamiltonian constraint:

∇2Ψ +
1
4
(q,ρρ +q,zz )Ψ = 0

• Tolerance: 〈rte〉 block < 0.03



Brill Waves
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Brill Waves
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